一、案例数据
已知常规A药治疗某病的有效率为85%,欲研究某公司研发的新药B非劣效于常规A药。设定非劣效性界值为-5%,取α=0.05,β=0.20,试估计该研究所需样本量。
二、案例分析
临床工作中评价药物的效果指标有效否(有效和无效)为二分类资料,已知常规药物A的有效率为85%,欲探讨新药B是否非劣效于常规药物A,宜采用单样本比例的非劣效性检验的样本量估算,需要以下几个参数:
- 非劣效性界值δ0,对于高优指标,δ0为负数,对于低优指标,δ0为正数。
- 标准(当前) 处理的有效率,即基线比例πB,本例πB= 0.85。
- 检验水准α (通常取0.01至0.1,本例取0.05)。
- 检验功效1-β (通常为0.80或更高,本研究取0.80)。
- 脱失率DR (通常不宜超过20%,本例取10%)。
三、软件操作
(一) 方法选择
在左侧界面中依次选择“Procedures (程序)”—“Proportions (比例)”—“One Proportion (单样本比例)”—“Non-Inferiority Tests for One Proportion (非劣效性检验)”见图1。
(二) 参数设置
在“Design (设置)”模块中按以下参数设置相应选项(图2):
- Solve For: 选择“Sample Size”,表示本分析的目的是用于计算样本量。
- Power Calculation:“Power Calculation Method”,表示样本量计算方法,本例选择“Normal Approximation”正态近似法。
- Test:“Higher Proportion are”指定成功或失败的比例,本例填写“Better”表示成功概率,又称高优指标;“Test Type”表示检验类型,本例选择“Z-test using S (P0)”。
- Power and Alpha: Power为把握度,填写“0.80”;Alpha为检验水准,填写“0.05”。
- Input Type: 表示输入数据的类型,本例中选择“Difference”,表示实验组与对照组有效率的差值。
- PB (Baseline Proportion): 输入基线比例πB。本例填“0.85”。
- d0 (Non-Inferiority Difference): 设定非劣效性界值δ0,对于高优指标,δ0为负数,对于低优指标,δ0为正数。δ0必须介于-1~1之间,本例填“-0.05”。
- d1(Actual Difference): 设定实际比例πn与基线比例πB的差值δ1。-1<δ1<1。在非劣效性检验中,通常设δ1=0。本例填“0”。
(三) 脱失率设置
在“Reports (结果报告)”模块中,勾选“Show Dropout-Inflated Sample Size Report (报告脱失样本量)”,在“Dropout Rate”中填写“10%”(图3),表示按照10%的脱失率计算样本量。设置好上述参数后点击“Calculate (计算)”。
四、结果及解释
图4列出了该研究设计的相关参数和样本量计算结果,可知计算的样本例数为368。
图5“References (参考文献)”列出了该计算过程中参考的相关文献;“Report Definitions (报告定义)”列出了各个参数的具体解释;“Summary Statements (报告概述)”为整个分析报告的摘要。
图6“Dropout-Inflated Sample Size (脱失样本量)”为考虑了脱失率的样本量(N'),也是研究实际开展过程中需要达到的最低样本量,本研究中为460。
图7为此次样本量估算整个过程的详细参数设置汇总。
五、结论
该案例为单样本比例的非劣效性检验的样本含量计算,已知基线比例πB为0.85,非劣效性差值δ0为-0.05。若取检验水准0.05、检验功效0.80,则至少需要368例样本才能观察到新药B效果非劣效于当前药物A。若考虑10%的脱失率,则至少需要460例研究对象。