关键词:预后研究质量评价; 预测因子研究质量评价; QUIPS
一、QUIPS工具概要
高质量的预后研究(prognostic research)对临床决策非常重要,不仅可以预测患者结局,还能通过识别管理分层风险,针对特定预后因素进行干预影响预后。然而,以前研究表明,很多预后研究在设计和实施过程中存在方法上的缺陷。对预后研究进行严谨地批判性评价对于识别和评估足以影响研究结果的偏倚至关重要。QUIPS (Quality In Prognosis Studies tool,预后研究偏倚评价工具)则是专门用于评价此类研究的工具。
首版QUIPS工具于2006年发布,从研究对象、研究对象失访、预后因素测量、结局测量、混杂因素测量和说明、统计分析等6个领域评估研究偏倚,并根据原始研究质量将评定结果分为是、部分是、否和不确定4类。之后,多位流行病学家、统计学家和临床专家基于首版QUIPS工具使用者反馈,采用德尔菲法和名义小组法对评估偏倚领域的条目进一步提炼,并提出新的偏倚评估等级分类,于2013年形成并发布新的QUIPS工具。
新版QUIPS工具将预后研究中存在的潜在偏倚分为6个方面,即研究对象、研究失访、预后因素测量、结局测量、研究混杂和统计分析报告,并根据原始研究中的描述,将每个领域的偏倚风险分为高、中等和低三个等级。
二、QUIPS工具的使用
应综合考虑每个领域的所有条目,综合判断各个领域的偏倚风险。应将支持条目评价的信息和方法记录下来(直接引用文献),评估结论应在至少2名评价员的共识下做出。对于一些与研究无关的条目或问题,可以跳过或省略。如果一项研究的回复率为100%,则“研究失访”域中几个条目问题均可以跳过。
每个领域都将被评定为高、中或低偏倚风险。如,关于“研究失访”领域,研究A报告了80%的应答率(20%的研究样本失访),作者通过调查发现完成随访者和未完成随访者在重要特征和结局方面没有重要差异,则被评定为低偏倚风险。 研究B,同样是80%的应答率,但如果两者之间在重要特征和结局方面存在重要差异,则被判定为高风险偏倚,因为有高达20%的失访率。但对于研究C,如果有99%的应答率,则无论其完成随访者和未完成随访者在重要特征和结局方面有无差异,均可以认为偏倚风险较低,因为其失访率非常低。
根据6个领域的评估结果,综合评价每个研究的总体偏倚风险。可以定义满足6个领域均为低风险,总体风险才能判定为低风险;也可以定义某几个关键的领域为低风险,总体风险就可以判定为低风险,但对于这种方法需要事先确定判定标准,而不是根据判定结果来进行人为选择。最好使用敏感性分析来探索所选定义对结果的影响。可以参考Cochrane干预性研究的偏倚风险评估工具和诊断试验准确性(diagnostic test accuracy, DTA)研究质量评价工具的使用,建议不要使用计算总分的方法进行评价。
三、QUIPS工具评价清单
Optimal study or characteristics of unbiased study 最佳研究或无偏倚研究 | Bias domains 偏倚风险领域 | Prompting items and considerations 评价条目要点 | Ratings 偏倚风险等级 |
The study sample adequately represents the population of interest | 1. Study Participation | a. Adequate participation in the study by eligible persons b. Description of the source population or population of interest c. Description of the baseline study sample d.Adequate description of the sampling frame and recruitment e. Adequate description of the period and place of recruitment f. Adequate description of inclusion and exclusion criteria | High risk of bias: The relationship between the PF and outcome is very likely to be different for participants and eligible nonparticipants Moderate risk of bias: The relationship between the PF and outcome may be different for participants and eligible nonparticipants Low risk of bias: The relationship between the PF and outcome is unlikely to be different for participants and eligible nonparticipants |
译文:研究样本充分代表了目标人群 | 译文: 1. 研究对象 | a. 在符合入组条件的人群中,获得足够的研究对象 b. 对源人群或目标人群的描述 c. 对研究样本基线资料的描述 d. 对抽样框架和招募过程进行充分的描述 e. 对招募的时间和地点进行充分的描述 f. 对纳入排除标准有充分的描述 | 高: 预后因素和结局之间的关联很可能在研究参与者和符合入组条件的非参与者中不同 中等: 预后因素和结局之间的关联可能在研究参与者和符合入组条件的非参与者中不同 低:预后因素和结果之间的关联不可能在研究参与者和符合入组条件的非参与者中不同 |
The study data available (i.e., participants not lost to follow-up) adequately represent the study sample | 2. Study Attrition | a. Adequate response rate for study participants b. Description of attempts to collect information on participants who dropped out c. Reasons for loss to follow-up are provided d. Adequate description of participants lost to follow-up e. There are no important differences between participants who completed the study and those who did not | High risk of bias: The relationship between the PF and outcome is very likely to be different for completing and noncompleting participants Moderate risk of bias: The relationship between the PF and outcome may be different for completing and noncompleting participants Low risk of bias: The relationship between the PF and outcome is unlikely to be different for completing and noncompleting participants |
译文:可获得的研究数据充分代表了研究样本 | 译文: 2. 研究失访 | a. 研究对象有足够的应答率 b. 关于试图收集退出的研究对象的信息说明 c. 提供研究对象失访的原因 d. 对失访研究对象的充分描述 e. 完成研究和未完成研究的参与者之间无重要区别 | 高: 预后因素和结局之间的关联很可能在完成随访的和未完成随访的研究参与者中不同 中等: 预后因素和结局之间的关联可能在完成随访的和未完成随访的研究参与者中不同 低:预后因素和结局之间的关联不可能在完成随访的和未完成随访的研究参与者中不同 |
The prognostic factors is measured in a similar way for all participants | 3. Prognostic Factor Measurement | a. A clear definition or description of the PF is provided b. Method of PF measurement is adequately valid and reliable c. Continuous variables are reported or appropriate cut points are used d. The method and setting of measurement of PF is the same for all study participants e. Adequate proportion of the study sample has complete data for the PF f. Appropriate methods of imputation are used for missing PF data | High risk of bias: The measurement of the PF is very likely to be different for different levels of the outcome of interest Moderate risk of bias: The measurement of the PF may be different for different levels of the outcome of interest Low risk of bias: The measurement of the PF is unlikely to be different for different levels of the outcome of interest |
译文:所有研究对象的预后因素均采用了相同方法测量 | 译文: 3.预后因素测量 | a. 对预后因素提供了清楚的定义或描述 b. 测量预后因素的方法足够有效和可信 c. 报告了连续性变量或合理的截断值 d. 所有研究对象的预后因素测量及设置方法都一致 e. 足够比例的研究对象具有完整的预后因素数据 f. 合适的数据填补方法用于填补缺失的预后因素数据 | 高: 对不同水平的关注结局,预后因素的测量很可能不同 中等: 对不同水平的关注结局,预后因素的测量可能不同 低: 对不同水平的关注结局,预后因素的测量不可能不同 |
The outcome of interest is measured in a similar way for all participants | 4. Outcome Measurement | a. A clear definition of the outcome is provided b. Method of outcome measurement used is adequately valid and reliable c. The method and setting of outcome measurement is the same for all study participants | High risk of bias: The measurement of the outcome is very likely to be different related to the baseline level of the PF Moderate risk of bias: The measurement of the outcome may be different related to the baseline level of the PF Low risk of bias: The measurement of the outcome is unlikely to be different related to the baseline level of the PF |
译文:所有研究对象的结局均采用了相同方法测量 | 译文: 4.结局测量 | a. 对结局,提供清楚的定义 b. 测量结局的方法充分有效可信 c. 测量结局的方法和设置对所有研究参与者都一致 | 高: 与预后因素基线水平相关的结局测量方法很可能不同 中等: 与预后因素基线水平相关的结局测量方法可能不同 低: 与预后因素基线水平相关的结局测量方法不可能不同 |
Important potential confounding factors are appropriately accounted for | 5. Study Confounding | a. ALL important confounders are measured b. Clear definitions of the important confounders measured are provided c. Measurement of all important confounders is adequately valid and reliable d. The method and setting of confounding measurement are the same for all study participants e. Appropriate methods are used if imputation is used for missing confounder data f. Important potential confounders are accounted for in the study design g. Important potential confounders are accounted for in the analysis | High risk of bias: The observed effect of the PF on the outcome is very likely to be distorted by another factor related to PF and outcome Moderate risk of bias: The observed effect of the PF on outcome may be distorted by another factor related to PF and outcome Low risk of bias: The observed effect of the PF on outcome is unlikely to be distorted by another factor related to PF and outcome |
译文:恰当地考虑了重要的潜在混杂因素 | 译文: 5.研究混杂 | a. 测量了所有重要的混杂因素 b. 对测量的重要的混杂因素提供了清楚的定义 c. 所有重要的混杂因素的测量方法足够有效可信 d. 测量混杂因素的方法和场所对所有研究参与者都一致 e. 选择了合适的方法来填补混杂因素的缺失值 f. 在研究设计中考虑了所有重要的混杂因素 g. 在数据分折中考虑了所有重要的混杂因素 | 高: 某个预后因素对结局的效应很可能被其他与结局和这个预后因素有关的混杂因素所干扰 中等: 某个预后因素对结局的效应可能被其他与结局和这个预后因素有关的混杂因素所干扰 低: 某个预后因素对结局的效应不可能被其他与结局和这个预后因素有关的混杂因素所干扰 |
The statistical analysis is appropriate, and all primary outcomes are reported | 6. Statistical Analysis and Reporting | a. Sufficient presentation of data to assess the adequacy of the analytic strategy b. Strategy for model building is appropriate and is based on a conceptual framework or model c. The selected statistical model is adequate for the design of the study d. There is no selective reporting of results | High risk of bias: The reported results are very likely to be spurious or biased related to analysis or reporting Moderate risk of bias: The reported results may be spurious or biased related to analysis or reporting Low risk of bias: The reported results are unlikely to be spurious or biased related to analysis or reporting |
译文:恰当的统计学分析,且报道了所有主要结果 | 译文: 6.统计分析报告 | a. 充分展示数据,以便评估分析策略的恰当性 b. 建模策略是合适的,并且基于概念性框架或模型 c. 基于研究设计,选择恰当的统计模型 d. 没有选择性报告研究结果 | 高: 分析报告结果很可能是虚假的或有偏的 中等: 分析报告结果可能是虚假的或有偏的 低: 分析报告结果不可能是虚假的或有偏的 |
注:本文内容是参考相关文献后对预后研究质量评价(Quality In Prognosis Studies, QUIPS)工具的概述,仅代表本网站观点。关于QUIPS工具的更多内容可参考Jill A Hayden等发表的文章Assessing bias in studies of prognostic factors