医学研究之回归分析的样本量计算——两直线回归截距的差异性检验

发布于 2022年3月26日 星期六 21:38:44 浏览:1933
原创不易,转载请注明来源,感谢!

前面介绍了“医学研究之回归分析的样本量计算——两直线回归斜率的差异性检验”,本文主要介绍两直线回归截距的差异性检验(Tests for the Difference Between Two Linear Regression Intercepts)的样本量估计。两直线回归截距的差异性检验是在两个分组中分别拟合回归方程,假设残差ε服从正态分布,进行两条直线回归截距是否相等的假设检验。

关键词:样本量计算; PASS; 回归分析; 直线回归; 直线回归截距的比较

一、案例数据

对于某两个有相关关系的变量X和Y,分别根据过去(组1)和近期(组2)的观测数据构建了两条回归直线。欲比较两条回归直线的截距,已知两条直线的截距分别为0.5和2.5。根据既往研究可知,残差标准差为0.6,两组自变量X的均值均为9,两组自变量X的标准差均为1.5。取α =0.05,β=0.1,试估计每组所需的样本含量。

二、案例分析

本研究中已知两变量存在相关关系,继而求出两条回归直线,欲比较两条直线截距是否相等,采用两直线回归截距的差异性检验,其样本量计算需要以下几个参数:

1. 两组回归直线的截距差值,本例中为2,即2.5-0.5=2。

2. 残差标准差,本例为0.6。

3. 两组自变量的标准差,本例σX1X2=1.5。

4. 两组自变量的均值,本例μX1=μX2=9。

5. 检验水准α (通常取0.01至0.1,本研究取0.05)。

6. 检验功效1-β (通常为0.8或更高,本研究取0.9)。

7. 脱失率DR (通常不宜超过20%,本研究取10%)。

三、软件操作

(一) 方法选择

在左侧界面中依次选择“Procedures (程序)”—“Regression (回归)”—“Linear Regression (直线回归)”—“Tests for the Difference Between Two Linear Regression Intercepts (两直线回归截距的差异性检验)”,见图1。

图1

(二) 参数设置

在“Design (设置)”模块中按以下参数设置相应选项(图2):

①Solve For:选择“Sample Size”,表示本分析的目的是用于计算样本量。

②Alternative Hypothesis:指定备择假设的单双侧及假设检验的方向。选择“Ha:δ≠0”,表示进行备择假设为H1:δ≠0的双侧检验。

③Power and Alpha:Power为把握度,填写“0.90”;Alpha为检验水准,填写“0.05”。

④Group Allocation:选择“Equal (N1=N2)”,表示每组的样本量相等。

⑤δ (α12, Intercept Difference):即两组回归直线截距的假设检验差值,可为任意非零差值。本例填“2”。

μX1 (Mean of X in Group 1):即组1的假设平均值,可为任意值。本例填“9”。

μX2 (Mean of X in Group 2):即组2的假设平均值,可为任意值。本例填“9”。

σ (SD of Residuals):即因变量Y在自变量X上回归的残差的一个或多个标准差值。作为残差均方(MSE)的平方根,可以从既往研究中得到。该值须为正值。本例填“0.6”。

σX1 (SD of X in Group 1):即使用总体公式计算的组1样本中自变量X的标准差(平方和除以n,而不是n-1),须为正值。本例填“1.5”。

σX2 (SD of X in Group 2):即使用总体公式计算的组2样本中自变量X的标准差(平方和除以n,而不是n-1),须为正值。本例填“1.5”。

图2

(三) 脱失率设置

在“Reports (结果报告)”模块中,勾选“Show Dropout-Inflated Sample Size Report (报告脱失样本量)”,在“Dropout Rate”中填写“10%”(图3),表示按照10%的脱失率计算样本量。设置好上述参数后点击“Calculate (计算)”。

图3

四、结果及解释

图4列出了该研究设计的相关参数和样本量计算结果,可知计算的每组所需样本数(N)为71。

图4

图5“References (参考文献)”列出了该计算过程中参考的相关文献;“Report Definitions (报告定义)”列出了各个参数的具体解释;“Summary Statements (报告概述)”为整个分析报告的摘要。

图5

图6“Dropout-Inflated Sample Size (脱失样本量)”为考虑了脱失率的样本量(N'),也是研究实际开展过程中需要达到的最低样本量,本研究中每组所需的样本数为79。

图6

图7为此次样本量估算整个过程的详细参数设置汇总。

图7

五、结论

本研究中已知两变量存在相关关系,继而分别根据过去(组1)和近期(组2)的观测数据构建两条回归直线。欲比较两条直线的截距,假设两条直线截距差值为2,两组自变量X的标准差均为1.5,两组自变量X的均值均为9.0,残差标准差为0.6,若取检验水准0.05,检验功效0.90,每组至少需要71例研究对象。若考虑10%的脱失率,则每组至少需要79例研究对象。

End
文章目录 沉浸式阅读