一、案例数据
一项针对抑郁症的药物疗效研究,以确定一种新药A与目前的传统药物B相比是否具有优效性。从预试验可知,应用传统药物B治疗抑郁症患者后治愈率为50%,新药A的治愈率为70%。研究者希望证明新旧药物的治愈率比率至少为1.2,才能证明其推广价值。研究者计划使用Farrington和Manning似然比检验统计量来分析数据,试估计所需的样本含量。
二、案例分析
本例中,由于治愈率越高为更优,因此是高优指标,如生存率、合格率、杀虫率等也是高优指标;反之,若数值越低为更优,则为低优指标,如死亡率、复发率等。欲研究新药物A的疗效是否优于传统药物B(对照组),可采用优效性检验,两独立样本率比的优效性检验样本量需要以下几个参数:
1. 对照疗法的治愈率P2,本例为0. 5。
2. 优效性比值R0(须为正数,本例为1.2)。
3. 检验水准α (通常取0.01至0.1,本例取0.025)。
4. 检验功效1-β (通常为0.8或更高,本研究取0.9)。
5. 实际比值R1,即新疗法的实际比例与对照疗法比例之比,本例中为1.4。
6. 脱失率DR (通常不宜超过20%,本例取10%)。
三、软件操作
(一) 方法选择
在左侧界面中依次选择“Procedures (程序)”—“Proportions (比例)”—“Two Independent Proportions (两独立样本比例)”—“Superiority by a Margin Tests (优效性检验)”—“Superiority by a Margin Tests for the Ratio of Two Proportions (两个比例之比的优效性检验)”,见图1。
(二) 参数设置
在“Design (设置)”模块中按以下参数设置相应选项(图2):
①Solve For:选择“Sample Size”,表示本分析的目的是用于计算样本量。
②Power Calculation Method:检验功效的计算方法,包括Binomial Enumeration(二项枚举法)和Normal Approximation(正态近似法)。当样本量相当大(即大于50)且比例在0.2~0.8之间时,两种方法将给出相似的结果,本例选择“Normal Approximation”。
③ Alternative Hypothesis:选择“One-Sided(H1:R1>R0)”,表示进行H1上单侧检验。
④Test Type:指定在搜索和报告中使用的统计检验方法,本例选择“Likelihood Score(Farr.&Mann.)”。
⑤Power and Alpha:Power为把握度,填写“0.90”;Alpha为检验水准,填写“0.025”。
⑥Group Allocation:选择“Equal (N1=N2)”,表示每组的样本量相等。
⑦R0(Ratio|H0=P1.0/P2):即优效性比值,表示H0下试验组比例与对照组比例之比,本例为“1.2”。
⑧R1(Ratio|H1=P1.1/P2):即实际比值,表示H1下试验组的实际比例与对照组比例之比,须为不等于1的正数。本例为例“1.4”。
⑨P2(Group 2 Proportion):即传统药物疗法的治愈率,通常为对照组、基线组、标准组的比例。本例为“0.5”。
(三) 脱失率设置
在“Reports (结果报告)”模块中,勾选“Show Dropout-Inflated Sample Size Report (报告脱失样本量)”,在“Dropout Rate”中填写“10%”(图3),表示按照10%的脱失率计算样本量。设置好上述参数后点击“Calculate (计算)”。
四、结果及解释
图4列出了该研究设计的相关参数和样本量计算结果,可知计算的每组样本例数(N)为606,总样本为1212。
图5“References (参考文献)”列出了该计算过程中参考的相关文献;“Report Definitions (报告定义)”列出了各个参数的具体解释;“Summary Statements (报告概述)”为整个分析报告的摘要。
图6“Dropout-Inflated Sample Size (脱失样本量)”为考虑了脱失率的样本量(N'),也是研究实际开展过程中需要达到的最低样本量,本研究中为每组674,总样本为1348。
图7为此次样本量估算整个过程的详细参数设置汇总。
五、结论
该案例为两个比例之比(率比)的优效性检验样本量计算。已知用传统药物B治疗抑郁症的治愈比例为0.5,新药A的实际治愈比例(0.7)与传统药物B的治愈比例(0.5)之比为1.4,在优效性比值为1.2的前提下,若取检验水准0.025、检验功效0.90,则至少需要用新药和传统药物分别治疗606例抑郁症患者,若考虑10%的脱失率,则两组至少各需要674例患者。